Week 2 period model

Filip Rozsypal

November 16, 2011

Outline

1 Two period model

2 Ricardian Equivalence

Two period model Basic setting

Setting:

- agent lives for two periods, t = 1, 2
- in each period t she gets endowment ω_t
- interest rate exogenously given
- utility function: U = u(c₁) + βu(c₂), with u(·) increasing and concave

Question: What is the optimal consumption profile (c_1, c_2) ? Why: this is the simplest possible setting with consumption/saving decision

Next step: try to expand out insights and discuss the role of govenrment

Budget constraint

Budget constraint (BC):

$$c_1 + \frac{c_2}{1+r} = \omega_1 + \frac{\omega_2}{1+r}$$

- Interpretation: discounted life-time spending (on consumption) has to be (lower or) equal to discounted life-time income.
- Underlying assumption: no borrowing constraints

Easy to generalize to infinite horizon case:

$$\sum_{t=0}^{\infty} \frac{c_t}{(1+r)^t} = \sum_{t=0}^{\infty} \frac{\omega_t}{(1+r)^t}$$

Budget constraint

Budget constraint: line with -(1 + r) slope intersecting (ω_1, ω_2)

- If $(c_1, c_2) = (\omega_1, \omega_2)$, then no saving/borrowing is taking place,
- from this point, the consumer might consume more today (increasing c_1 by one unit) only by consuming less tomorrow (decreasing c_2 by 1 + r)

Indifference curves

Optimal consumption profile

If (c_1, c_2) is optimal then the corresponding indifference curve has to be tangent to the budget constraint and \rightarrow Euler equation is satisfied (see later)

Analytic solution

Solution methods:

• Lagrange multipliers

• solve for one consumption and find FOC (with two periods only) From BC:

$$c_2 = (1+r)(\omega_1 - c_1) + \omega_2$$

Interpretation: consumption in the second (last) period is equal to the savings from the first period $(1 + r)(\omega_1 - c_1)$ (can be negative) combined with the income in the second period. In other words, with ω_1 and ω_2 given, once c_1 is chosen, c_2 is also determined by the budget constraint.

Substituting this into the utility function allows us to represent a function of two variables $U(c_1, c_2)$ as a function of one variable only $U(c_1)$

$$U(c_1, c_2) = u(c_1) + \beta u(c_2)$$

$$U(c_1) = u(c_1) + \beta u[(1+r)(\omega_1 - c_1) + \omega_2]$$

FOC:

$$U'(c_1) = u'(c_1) + \beta u' [(1+r)(\omega_1 - c_1) + \omega_2](-1)(1+r)$$

$$0 = u'(c_1) - (1+r)\beta u' [(1+r)(\omega_1 - c_1) + \omega_2]$$

substituting c_2 back and putting FOC equal to zero we get Euler Equation

$$u'(c_1)=(1+r)\beta u'(c_2)$$

Interpretation:

- by postponing consumption of one marginal unit of consumption today I am decreasing my utility today by u'(c_t)
- 2 if I save this one unit of consumption, tomorrow I get 1 + r, however, the utility is discounted by β
- ${f 3}$ in equilibrium, no such a transfer is profitable \Rightarrow marginal benefits must be equal

Two period model Euler equation

Euler Equation

$$u'(c_1) = (1+r)\beta u'(c_2)$$

Observation: Neither ω_1 nor ω_2 are present in EE

- consumption smoothing: time path of income is irrelevant for the path of consumption consumption profile is smoother then income profile
- no liquidity constraints is crucial assumption!

Two period model Euler equation

Euler Equation

$$u'(c_1)=(1+r)\beta u'(c_2)$$

Recall: the point of tangency of the indifference curve with th BC is characterised by $-(1 + r) = -\frac{u'(c_1)}{\beta u'(c_2)}$ This follows directly from Euler equation!

Borrowing constraints

Note that if $c_1 > \omega_1$ then the consumer is a borrower in the first period

What if the consumers are liquidity constrained? (=there is some maximum borrowing b_{max})

Borrowing constraints

• Lower welfare attained: constrained indifference curve *I*_{con} is below the unconstrained one *I*_{uncon}

Borrowing constraints

 Euler equation does not hold: *I_{con}* is not tangent to BC in the (constrained) optimal consumption profile (*c*₁, *c*₂) ('corner solution')

Borrowing constraints

Not always the case.

Other possible modification: higher *r* on borrowing then lending. Exercise: how would the BC look like?

Borrowing constraints and transfers and taxation

If the consumers are liquidity constrained, the government might help

- giving out transfers in the first period and taxing in the second period, so the government BC is satisfied
- positive transfer (=negative taxes) in the first period T₁ is paid by taxing T₂ in the second period

Outline

1 Two period model

2 Ricardian Equivalence

Ricardian Equivalence

Consider a situation without any borrowing constraint. Then transfers funded by taxes translate to movement along BC, hence the choice set is not affected. Can we generalize this?

- We have already established that the consumer does not care about time prife of income, he cares only about the discounted value of lifetime income $\sum_{t=0}^{\infty} \frac{Y_t}{(1+r)^t}$
- Consequently, the consumer does not care about the taxes in individual periods, he cares only about the total discounted value of taxes $\sum_{t=0}^{\infty} \frac{T_t}{(1+r)^t}$

Ricardian Equivalence

 \Rightarrow any change in the profile of government transfers, <u>keeping</u> $\sum_{t=0}^{\infty} \frac{T_t}{(1+r)^t}$ <u>constant</u>, does not affect the optimal consumption profile (again: no borrowing constraints assumption critical)

- · consumers simply change their borrowing profile
- considering only <u>transfers</u>, not <u>government consumption</u> (to keep interest rate unaffected)

Ricardian Equivalence

current policy debate

Ricardian equivalence \Rightarrow any transfers cannot help to increase consumption

Some people use this to imply that the government cannot succeed in stimulating a low aggregate demand.

However,

- · low income households are liquidity constrained
- behavioral economics demonstrates the limits of rationality (hence difficult to maintain assumptions about complete rationality, infinite horizon etc.)

Optional reading: Greg Mankiw, The Savers-Spenders Theory of Fiscal Policy, 2000 American Economic Review.

Neoclassical vs Keynesian consumers

Mankiw argues that significant number of households behave as <u>rule</u> <u>of thumb</u> consumers

- do not rationalize that extra transfers will eventually have to be paid back by taxes in the future
- behavior described better by some simple rule (i.e. spend 2/3 of your monthly income) rather then as a result of an optimization over infinite horizon

Such consumers can be describe by C = a + bY, i.e. the traditional keynesian consumption function.

Interesting area of research,

- this heterogeneity effects the evaluation of economic policies
- possible applications: life-cycle models and evaluation of pension reforms

Outline

1 Two period model

2 Ricardian Equivalence

Summary

- Two period model
 - setting
 - solution
 - assumptions and their representation
- Ricardian equivalence
 - consumption invariant to changes in timing of taxes and transfers (and corresponding assumptions)
 - Keynesian and rule of the thumb consumers