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Filip Rozsypal

November 21, 2011

Exercise 1 (Romer, 1.2)

Suppose that the growth rate of some variable, X, is constant and equal to a > 0 from time t = 0
to t = t1; drops to 0 at time t1; rises gradually from 0 to a from time t1 to t2; and is constant and
equal to a after t2.

1. Sketch a graph of the growth rate of X as a function of time.

2. Sketch a graph of logX as a function of time

Solution
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Exercise 2 (Romer, 1.5)

Consider Solow model with technological and population growth (with growth rates g and n re-
spectively) and depreciation rate δ as we derived it in the class. Suppose F (K,AL) = Kα(AL)1−α.

1. Find expressions for k∗, y∗ and c∗ as function of the parameters of the model s, n, g, δ and
α.

2. What is the golden-rule value of k?

3. What saving rate s∗ is needed to yield the golden rule capital stock?
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Solution

1. Let’s start with Y = F (K,AL) and transform it into the per effective worker form:

Y = F (K,AL)

y =
Y

AL
=

1

AL
F (K,AL)

= F

(
K

AL
,
AL

AL

)
= F (k, 1) = kα11−α

y = kα

Now, using K̇ = −δK + sY let’s find the low of motion for k:

k̇ =
∂

∂t

K

AL
=
K̇AL−K ∂

∂t (AL)

(AL)2

=
K̇

AL
− K

AL

∂
∂t (AL)

AL

=
−δK + sY

AL
− k ȦL+AL̇

AL

= −δk + sy − k

(
Ȧ

A
+
L̇

L

)
k̇ = skα − (δ + g + n)k

In steady state, the stock of capital per effective worker is stable, hence k̇ = 0:

0 = skα − (δ + g + n)k

skα = (δ + g + n)k

kα−1 =
δ + g + n

s

k∗ =

(
s

δ + n+ g

) 1
1−α

Note that we have transformed the exponent, so it is positive now (because α ∈ (0, 1)). The
steady state output and consumption per effective worker are then

y∗ = (k∗)α =

(
s

δ + n+ g

) α
1−α

c =
C

AL
=

(1− s)Y
AL

= (1− s)y

c∗ = (1− s)
(

s

δ + n+ g

) α
1−α

2. The golden rule value of k is such k which maximizes consumption. From the previous
we know that we can write s = (k∗)1−α(δ + g + n), substituting this into the result for
consumption yields

c∗ = (1− (k∗)1−α(δ + g + n))

(
(k∗)1−α(δ + g + n)

δ + n+ g

) α
1−α

= (k∗)α − (δ + g + n)k∗
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Intuition can be obtained if we looked consumption as

c∗ = f(k∗(s))− (δ + n+ g)k∗(s)

∂c∗

∂s
= [f ′(k∗(s))− (δ + g + n)]

∂k∗

∂s

From this expression we can see that the optimal consumption is obtained if the derivative
of the production function at the steady state is equal to (δ + g + n). Intuition: if we want
to increase the capital stock by a marginal unit, we will have to pay (δ + g + n) units to
sustain this additional unit of capital.

Furthermore, the condition f ′(k∗(s))−(δ+g+n) can be rewritten as α(k∗)α−1 = (δ+g+n).
From here we can see that

k∗golden =

(
α

δ + g + n

) 1
1−α

3. comparing the previous result k∗golden =
(

α
δ+g+n

) 1
1−α

with the optimal capital for a any s,

k∗(s) =
(

s
δ+g+n

) 1
1−α

, we immediately see that the optimal saving rate is equal to α,
sgolden = α.

Exercise 3

Consider Solow model with population and technological growth (n, g). Also, we know that
Kt+1 = sF (Kt, AtLt) + (1− δK). In the class we have used the continuous time calculus to derive
k̇ = sf(k)− (n+ g + δ)k.

Working with the discrete variables, show that

(1 + g + n)(kt+1 − kt) = sf(k)− (n+ g + δ)kt.

Solution

Kt+1 = sF (Kt, AtLt) + (1− δK)

Kt+1

AtLt
=
sF (Kt, AtLt)

AtLt
+

Kt

AtLt
− δ Kt

AtLt
Kt+1

At+1Lt+1

At+1Lt+1

AtLt
= sf(kt) + kt − δkt

kt+1(1 + g)(1 + n) = sf(kt) + kt − δkt

Now, n and g are growth rate, i.e. the magnitude of these number is about 1e-2., hence the term
ng is of magnitude 10e-4 and as such it can be ignored and (1 + g)(1 + n) ≈ (1 + g + n)

kt+1(1 + g + n) = sf(kt) + kt − δkt
kt+1(1 + g + n)− kt = sf(kt)− δkt

kt+1(1 + g + n)− kt(1 + g + n) = sf(kt)− δkt − kt(g + n)

(kt+1 − kt)(1 + g + n) = sf(kt)− (δ + n+ g)kt

Note that the right hand side of this equation has the same form as the one we derived for the
continuous case of k̇.
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Exercise 4

In the framework of the dynamic model we have derived in the class, consider a simple modification
by adding the government. The demand for output is hence given by private consuption and
government expenditures: Y D = C +G.

1. describe the intertemporal government budget constraint

2. analyze the effects of a permanent and a temporary increase of government spending.

(hint : How strong is the wealth effect in either case?)

Solution

1. The traditional way how to model the government is to assume that it has to balance its
budgets over infinite horizon (assuming that the interest rate is constant):

∞∑
t=0

Gt
(1 + r)t

=

∞∑
t=0

Tt
(1 + r)t

,

where Gt denotes government spending in period t is financed by taxes Tt.

Now consider two cases of changes in government spending G̃t = Gt + ∆G:

• permanent, meaning that G̃t = Gt + ∆G for all t starting today for ever hence this can
be written as

∞∑
t=0

G̃t
(1 + r)t

=

∞∑
t=0

Tt
(1 + r)t

∞∑
t=0

Gt
(1 + r)t

+

∞∑
t=0

∆G

(1 + r)t
=

∞∑
t=0

Tt
(1 + r)t

∞∑
t=0

Gt
(1 + r)t

+ ∆G
1 + r

r
=

∞∑
t=0

Tt
(1 + r)t

where I used the fact that ∆G is time invariant and hence can be put outside of
summation and then used the fact that

∑∞
t=0 q

t = 1
1−q

• transitory meaning that G̃t = Gt + ∆G for all t = 0 and then G̃t = Gt for t = 1, 2, . . .

∞∑
t=0

G̃t
(1 + r)t

=

∞∑
t=0

Tt
(1 + r)t

∞∑
t=0

Gt
(1 + r)t

+ ∆G =

∞∑
t=0

Tt
(1 + r)t

The difference is between the two cases is the difference of ∆G 1+r
r against ∆G. From here

you can see that the difference in the discounted value of taxes has to be much stronger in
the permanent case. The effect is bigger the smaller the interest rate r is.
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2. The budget constraint of the consumer can be written as

∞∑
t=0

Ct
(1 + r)t

=

∞∑
t=0

Yt − Tt
(1 + r)t

=

∞∑
t=0

Yt
(1 + r)t

−
∞∑
t=0

Tt
(1 + r)t

∞∑
t=0

Ct
(1 + r)t

=

{∑∞
t=0

Yt
(1+r)t −

∑∞
t=0

Gt
(1+r)t −∆G 1+r

r for permanent change∑∞
t=0

Yt
(1+r)t −

∑∞
t=0

Gt
(1+r)t −∆G for transitory change

and hence the wealth effect of the permanent change in the consumer wealth is much stronger
for the permanent change in the government spending for the same reasons as argued above.
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